A model of parallel time estimation
نویسندگان
چکیده
In earlier work, Taatgen, Van Rijn and Anderson (in press) have shown that embedding a simple module that generates temporal information in a more general cognitive architecture explains timing phenomena that were earlier attributed to a hypothesized more complex temporal system. However, the embedded temporal module does not support parallel time estimations, of, for example, two concurrent estimations. Explaining the human capacity of doing multiple time estimations requires either adding additional temporal modules, or assuming higher level processing to strategically use a single timer for parallel timing. This paper presents an experiment and a computational model that show that the latter approach is more plausible for human parallel time estimation.
منابع مشابه
Implementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملA Normative Dynamic Model of Regional Economy
Dynamic model, regional economy, innovation. This paper presents a normative balance mathematical model of regional economy that contains a lot of unspecified parameters which are not defined directly by the data of economic statistics. A method for estimation of the model parameters by application of parallel computations on multi-processors systems is presented. It is determined the...
متن کاملA fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates
This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...
متن کاملA New ILP Model for Identical Parallel-Machine Scheduling with Family Setup Times Minimizing the Total Weighted Flow Time by a Genetic Algorithm
This paper presents a novel, integer-linear programming (ILP) model for an identical parallel-machine scheduling problem with family setup times that minimizes the total weighted flow time (TWFT). Some researchers have addressed parallel-machine scheduling problems in the literature over the last three decades. However, the existing studies have been limited to the research of independent jobs,...
متن کاملA bi-objective model for a scheduling problem of unrelated parallel batch processing machines with fuzzy parameters by two fuzzy multi-objective meta-heuristics
This paper considers a bi-objective model for a scheduling problem of unrelated parallel batch processing machines to minimize the makespan and maximum tardiness, simultaneously. Each job has a specific size and the data corresponding to its ready time, due date and processing time-dependent machine are uncertain and determined by trapezoidal fuzzy numbers. Each machine has a specific capacity,...
متن کاملParallel Generation of t-ary Trees
A parallel algorithm for generating t-ary tree sequences in reverse B-order is presented. The algorithm generates t-ary trees by 0-1 sequences, and each 0-1 sequences is generated in constant average time O(1). The algorithm is executed on a CREW SM SIMD model, and is adaptive and cost-optimal. Prior to the discussion of the parallel algorithm a new sequential generation with O(1) average time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007